
Etherlime Documentation

Limechain

Apr 29, 2020





Developer Documentation

1 What is etherlime? 3
1.1 Milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Etherlime Library API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Etherlime CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Migration from Truffle to Etherlime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 License 29

i



ii



Etherlime Documentation

Developer Documentation 1

https://badge.fury.io/js/etherlime
https://travis-ci.org/LimeChain/etherlime
https://codecov.io/gh/LimeChain/etherlime
https://gitter.im/lime-tech-talks/Lobby


Etherlime Documentation

2 Developer Documentation



CHAPTER 1

What is etherlime?

etherlime is an ethereum development and deployment framework based on ethers.js.

This framework provides alternative to the other web3.js based frameworks and allows for ultimate control by the
developer. It also adds much needed verboseness in the deployment process so that you can be aware of what is really
going on (as opposed to the general shooting in the dark technique).

This framework was born out of necessity, hardships and trouble in the development and deployment of ethereum
smart contracts. We are trying to ease the pain of deployment, compilation and unit testing and add much needed
stability to the process. In our mind ethers is much more stable alternative than web3.js for the moment therefore this
framework is born.

Etherlime can be used as library and/or command line tool. The command line tools give you great boosts but you can
skip them fully and use plain old node.js including the etherlime library.

1.1 Milestones

• [Ready] Being able to deploy compiled contracts on local and infura nodes <—- Done

• [Ready] Being able to compile contracts to the desired formats for deployment <—- Done

• [Ready] Being able to run unit tests on the compiled contracts <—- Done

• [Ready] Being able to run unit tests with code coverage <—- Done

• [Ready] Being able to debug transactions <—- Done

• [Not Ready] Being able to verify contracts <—- Next

1.2 Community

Join our community group

3

https://github.com/ethers-io/ethers.js/
https://t.me/etherlime/


Etherlime Documentation

1.2.1 Quick Start

Installing

npm i -g etherlime

Running embedded ganache-cli

etherlime ganache

Allows the use of EtherlimeGanacheDeployer

Deploying with etherlime

Initialize etherlime

etherlime init

This will create deployment directory with deploy.js file inside. You can use this file to write your deployment
procedure.

Deployer Example

const etherlime = require('etherlime');

const TestContract = require('../build/TestContract.json'); // Path to your etherlime
→˓compiled contract json file

const deploy = async (network, secret) => {

const deployer = new etherlime.EtherlimeGanacheDeployer();

const result = await deployer.deploy(TestContract, {}); // Add params separated
→˓with ,
}

module.exports = { deploy }

Verifying Smart Contract Example

const etherlime = require('etherlime');

const TestContract = require('../build/TestContract.json'); // Path to your etherlime
→˓compiled contract json file

const deploy = async (network, secret, apiKey) => {
deployer.defaultOverrides = { apiKey };
const deployer = new etherlime.InfuraPrivateKeyDeployer(secret, network, "INFURA_

→˓API_KEY");

(continues on next page)

4 Chapter 1. What is etherlime?



Etherlime Documentation

(continued from previous page)

const result = await deployer.deployAndVerify(TestContract, {}); // Add params
→˓separated with ,
}

module.exports = { deploy }

Result of ``etherlime deploy`` with ``deployAndVerify`` method would be something
→˓like this: |Verifier
result|

Deploying

Run the following in order to execute the deployment file mentioned above:

etherlime deploy

The deployment process is verbose and gives you real-time info about the performed actions. In addition there is a
report of the actions when the deployment finishes (as not all of us monitor the deployment process constantly);

Result of etherlime deploywould be something like this:

History of your deploys

In order to see a list of what you’ve deployed you can run the following command:

etherlime history

1.2.2 Etherlime Library API

Deployer

Deployer functionality

The main functionality the deployer exposes is (obviously) the ability to deploy compiled contract.

This is achieved through the deploy(contract, [libraries], [params]) function.

deploy(contract, [libraries], [params])

Parameters:

• contract - descriptor object for contract to be deployed. More details below

• libraries - key-value object containing all libraries which will be linked to the contract.

• params - the constructor params you’d need to pass on deploy (if there are any)

1.2. Community 5

https://imgur.com/a/NyLX9mH


Etherlime Documentation

The contract is descriptor object that needs to have atleast the following three fields:

• contractName - the name of the contract

• abi - the abi interface of the contract

• bytecode - the compiled bytecode

The easiest way to get such descriptor is to compile your solidity files via etherlime compile

The libraries object should be in the following format:

{
libraryName0: '0xAddressOfLibrary0',
libraryName1: '0xAddressOfLibrary1'

}

If the contract to be deployed doesn’t contains any libraries, {}, undefined, null, false or 0 can be passed. For
convenience we have made the deploy function to work even without this parameter passed.

Example

Linking libraries

const contractUsingQueueAndLinkedList = require('...');

const libraries = {
Queue: '0x655341AabD39a5ee0939796dF610aD685a984C53,
LinkedList: '0x619acBB5Dafc5aC340B6de4821835aF50adb29c1'

}

await deployer.deploy(contractUsingQueueAndLinkedList, libraries);

Skipping linking on contract without arguments

const contractWithoutLibraries = require('...');

await deployer.deploy(contractWithoutLibraries);

Skipping linking on contract with arguments

const contractWithoutLibraries = require('...');

await deployer.deploy(contractWithoutLibraries, false, param1, param2);

deployAndVerify(contract, [libraries], [params])

The main functionality the deployAndVerify exposes is (obviously) the ability to deploy and then verify compiled
contract on Etherscan. This method exposes the same features as deploy method, but in addition automatically verifies
the deployed smart contract using Etherscan API with Etherscan API Key.

In order to use the deployAndVerify method of the deployer, an Etherscan API Key is used. You can create your
Etherscan API Key here.

Parameters:

• contract - descriptor object for contract to be deployed. More details below

• libraries - key-value object containing all libraries which will be linked to the contract.

• params - the constructor params you’d need to pass on deploy (if there are any)

6 Chapter 1. What is etherlime?

https://etherscan.io/login?cmd=last


Etherlime Documentation

The deployment method reads the API Key form the deployer defaultOverrides object.

Passing API Key to the deployer:

• Passing the API Key to the defaultOverrides object:

deployer.defaultOverrides = { gasLimit: 4700000, gasPrice: 3000000000,
→˓etherscanApiKey: '3DQYBPZZS77YDR15NKJHURVTV9WI2KH6UY' };

• Setting the API Key through the deployer setVerifierApiKey setter:

deployer.setVerifierApiKey('3DQYBPZZS77YDR15NKJHURVTV9WI2KH6UY')

• Passing the API Key from etherlime deploy command with optional parameter etherscanApiKey:
etherlime deploy –secret=”Your private key” –network=”rinkeby” –ether-
scanApiKey=”3DQYBPZZS77YDR15NKJHURVTV9WI2KH6UY”

const deploy = async (network, secret, etherscanApiKey) => {
const deployer = new etherlime.InfuraPrivateKeyDeployer(secret, network, "INFURA_API_
→˓KEY");
deployer.defaultOverrides = { gasLimit: 4700000, gasPrice: 3000000000,
→˓etherscanApiKey };
};

Network is automatically detected based on the network that the deployer is set to deploy. The supported networks
are:

• mainnet

• ropsten

• rinkeby

• kovan

• goerli

estimateGas(contract, [libraries], [params])

Estimates the gas that this transaction is going to cost you.

Parameters:

• contract - descriptor object for contract to be deployed

• libraries - key-value object containing all libraries which will be linked to the contract.

• params - the constructor params you’d need to pass on deploy (if there are any)

The contract is descriptor object is the same as above.

Example

const estimate = await deployer.estimateGas(TestContract, randomParam1, randomParam2);
// returns something like "2470692"

Deployers

1.2. Community 7



Etherlime Documentation

InfuraPrivateKeyDeployer

InfuraPrivateKeyDeployer(privateKey, network, apiKey, [defaultOverrides])

Parameters:

• privateKey - The private key to the deployment wallet/signer instance

• network - network as found in ethers.providers.networks

• apiKey - your Infura API key

• defaultOverrides - [Optional] object overriding the deployment settings for gasPrice , gasLimit
and chainId.

const etherlime = require('etherlime');

const TestContract = require('./TestContract.json');

const defaultConfigs = {
gasPrice: 20000000000,
gasLimit: 4700000,
chainId: 0 // Suitable for deploying on private networks like Quorum

}

const deploy = async (network, secret) => {

const deployer = new etherlime.InfuraPrivateKeyDeployer('Your Private Key Goes
→˓Here', 'ropsten', 'Your Infura API Key', defaultConfigs);

const result = await deployer.deploy(TestContract,
→˓'0xda8a06f1c910cab18ad187be1faa2b8606c2ec86', 1539426974);
}

Setters

deployer . setPrivateKey (privateKey)

• privateKey - The private key to the deployment wallet/signer instance

deployer . setNetwork (network)

• network - network as found in ethers.providers.networks

deployer . setApiKey (apiKey)

• apiKey - your Infura API key

deployer . setDefaultOverrides (defaultOverrides)

• defaultOverrides - object overriding the deployment settings for gasPrice ,
gasLimit and chainId.

deployer . setSigner (signer)

• signer - ethers.Wallet instance

deployer . setProvider (provider)

• provider - ethers.provider instance

deployer . setVerifierApiKey (etherscanApiKey)

8 Chapter 1. What is etherlime?



Etherlime Documentation

• etherscanApiKey - Etherscan API Key

Example

const deployer = new etherlime.InfuraPrivateKeyDeployer(privateKey, network, apiKey,
→˓defaultConfigs);
const newNetwork = 'ropsten';

deployer.setNetwork(newNetwork);

JSONRPCPrivateKeyDeployer

JSONRPCPrivateKeyDeployer(privateKey, nodeUrl, [defaultOverrides])

Parameters:

• privateKey - The private key to the deployment wallet/signer instance

• nodeUrl - the url to the node you are trying to connect (local or remote)

• defaultOverrides - [Optional] object overriding the deployment settings for gasPrice , gasLimit
and chainId.

const etherlime = require('etherlime');

const TestContract = require('./TestContract.json');

const defaultConfigs = {
gasPrice: 20000000000,
gasLimit: 4700000,
chainId: 0 // Suitable for deploying on private networks like Quorum

}

const deploy = async (network, secret) => {

const deployer = new etherlime.JSONRPCPrivateKeyDeployer('Your Private Key Goes
→˓Here', 'http://localhost:8545/', defaultConfigs);

const result = await deployer.deploy(TestContract);
}

Setters

deployer . setPrivateKey (privateKey)

• privateKey - The private key to the deployment wallet/signer instance

deployer . setNodeUrl (nodeUrl)

• nodeUrl - the url to the node you are trying to connect (local or remote)

deployer . setDefaultOverrides (defaultOverrides)

• defaultOverrides - object overriding the deployment settings for gasPrice ,
gasLimit and chainId.

deployer . setSigner (signer)

• signer - ethers.Wallet instance

1.2. Community 9



Etherlime Documentation

deployer . setProvider (provider)

• provider - ethers.provider instance

deployer . setVerifierApiKey (etherscanApiKey)

• etherscanApiKey - Etherscan API Key

Example

const deployer = new etherlime.JSONRPCPrivateKeyDeployer(privateKey, nodeUrl,
→˓defaultOverrides);

const newNodeUrl = http://localhost:9545;
deployer.setNodeUrl(newNodeUrl);

EtherlimeGanacheDeployer

EtherlimeGanacheDeployer([privateKey], [port], [defaultOverrides])

Parameters:

• privateKey - [Optional] The private key to the deployment wallet/signer instance. Defauts to the first one in
the etherlime ganache

• port - [Optional] the port you’ve ran the etherlime ganache on. Defaults to 8545.

• defaultOverrides - [Optional] object overriding the deployment settings for gasPrice , gasLimit
and chainId.

This deployer only works with etherlime ganache

const etherlime = require('etherlime');

const TestContract = require('./TestContract.json');

const defaultConfigs = {
gasPrice: 20000000000,
gasLimit: 4700000,
chainId: 0 // Suitable for deploying on private networks like Quorum

}

const deploy = async (network, secret) => {

const deployer = new etherlime.EtherlimeGanacheDeployer();

const result = await deployer.deploy(TestContract);
}

Setters

deployer . setPrivateKey (privateKey)

• privateKey - The private key to the deployment wallet/signer instance

deployer . setPort (port)

• port - the port you’ve ran the etherlime ganache on.

deployer . setDefaultOverrides (defaultOverrides)

10 Chapter 1. What is etherlime?



Etherlime Documentation

• defaultOverrides - object overriding the deployment settings for gasPrice ,
gasLimit and chainId.

deployer . setNodeUrl (nodeUrl)

• nodeUrl - the url to the node you are trying to connect (local or remote)

deployer . setSigner (signer)

• signer - ethers.Wallet instance

deployer . setProvider (provider)

• provider - ethers.provider instance

deployer . setVerifierApiKey (etherscanApiKey)

• etherscanApiKey - Etherscan API Key

Example

const deployer = new etherlime.EtherlimeGanacheDeployer();
const port = 9545;

deployer.setPort(port);

Deployed Contract Wrapper

Wrappers

One of the advancements of the etherlime is the result of the deployment - the DeployedContractWrapper

The DeployedContractWrapper is a powerful object that provides you with ethers.Contract amongst
other functionalities. This allows you to start using your deployed contract right away as part of your deployment
sequence (f.e. you can call initialization methods)

In addition it exposes you verboseWaitForTransaction(transaction, transactionLabel) func-
tion. This function can be used to wait for transaction to be mined while giving you verbose output of the state. In
addition it allows you to specify a label for the transaction you are waiting for, so that you can get a better understand-
ing of what transaction is being waited for. This comes in handy when deployment scripts start to grow.

const contractWrapper = await deployer.deploy(ICOTokenContract);
const transferTransaction = await contractWrapper.transferOwnership(randomAddress);
const result = await contractWrapper.verboseWaitForTransaction(transferTransaction,
→˓'Transfer Ownership');

If you are working with EtherlimeGanacheDeployer you will have the from method at your disposal. It will allow
you to call certain methods from other default accounts.

const deployer = new etherlime.EtherlimeGanacheDeployer();
const contractWrapper = await deployer.deploy(SomeContract);
const tx = await contractWrapper.from(0 /* could be string address or ethers.Wallet
→˓instance*/).someFunction(params);
const result = await contractWrapper.verboseWaitForTransaction(tx);

Working with previously deployed contracts

Sometimes you want to work with already deployed contract. You can do this two ways:

1.2. Community 11



Etherlime Documentation

etherlime.ContractAt

etherlime.ContractAt(contract, contractAddress, [signer], [providerOrPort])

Etherlime has a convenience method allowing you to quickly wrap contracts. Passing the contract descriptor and the
address it is deployed ContractAt will wire up an instance of the wrapper connected to etherlime ganache on the
default port and default account. Optionally you can provide an account and port to connect to etherlime ganache.
Alternatively if you want to connect to another provider you can pass it as last parameter, but then you must pass a
signer too which is already connected to the same provider.

const deployedContract = etherlime.ContractAt(ContractDescriptor,
→˓deployedContractAddress);

const tx = await deployedContract.someMethod(randomParam);
const result = await deployedContract.verboseWaitForTransaction(tx);

The deployer instance

The deployer object allows you to wrap such an deployed contract by it’s address and continue using the power
of the wrapper object. The function you can use to achieve this is wrapDeployedContract(contract,
contractAddress).

const deployedContractWrapper = deployer.
→˓wrapDeployedContract(SomeContractWithInitMethod, alreadyDeployedContractAddress);

const initTransaction = await deployedContractWrapper.init(randomParam,
→˓defaultConfigs);
const result = await deployedContractWrapper.
→˓verboseWaitForTransaction(initTransaction, 'Init Contract');

1.2.3 Etherlime CLI

Installing & Help

Syntax

npm i -g etherlime

Install the global etherlime to allow you to run etherlime commands.

Help

etherlime help

Run this command to give you all possible commands of etherlime + help info

Version

12 Chapter 1. What is etherlime?



Etherlime Documentation

etherlime --version

Running this command will give you the current installed etherlime version

etherlime init

Syntax

etherlime init [output] [zk]

Parameters:

• output - [Optional] Defines the way that the logs are shown. Choices: none - silences the output of logs,
normal - see verbose logs in the console and structured - structured output in a file meant for inter program
communication.

• zk - [Optional] Defines whether to include in project a zk-proof folder with primary ready to use circuit for
compiling. Defaults to false.

Running this command will install etherlime in the directory you’ve run it and will create deployment directory
with deploy.js prepared for you to use. You can use this file to write your deployment procedure. It also create
test directory where you can write your tests. It comes with an exampleTest.js file which you can use as a
start point. The init command generate and package.json for you which you can use for your npm modules.

etherlime ganache

Syntax

etherlime ganache [port] [output] [fork] [gasPrice] [gasLimit] [mnemonic] [count]

Parameters:

• port - [Optional] By specifying --port you can specify port to run the etherlime ganache. Default: 8545

• output - [Optional] Defines the way that the logs are shown. Choices: none - silences the output of logs,
normal - see verbose logs in the console and structured - structured output in a file meant for inter program
communication.

• fork - [Optional] By specifying --fork you can fork from another currently running Ethereum network at a
given block or at a last current block. The input to the optional parameter should be the HTTP location and port
of the running network, e.g http://localhost:8545 and in addition you can specify a block number to fork from,
using an @ sign: http://localhost:8545@3349038

• gasPrice - [Optional] By specifying --gasPrice you can specify the default gas price for transactions.
Default: 2000000000 wei (2 Gwei)

• gasLimit - [Optional] By specifying --gasLimit you can specify the default block gas limit. Default:
6721975

• mnemonic - [Optional] By specifying --mnemonic you can generate additional account/accounts to the
accounts that are coming with etherlime ganache command. Please note: Running this command will
modify your local setup.json.

• count - [Optional] By specifying --count you can specify how many accounts to generate based on the
mnemomic specified with --mnemomnic. Defaults to: 1 and works only if --mnemonic is passed.

1.2. Community 13

http://localhost:8545
http://localhost:8545@3349038


Etherlime Documentation

For easier integration and usage of EtherlimeGanacheDeployer and running local deployments you can use
the embedded ganache-cli. It comes with fixed 10 accounts and a lot of ETH (191408831393027885698 to be precise)

etherlime compile

Running this command will compile all smart contracts along with imported sources. The command comes with
integrated solidity and vyper compiler and would automatically fetch all files with ‘.sol’ and ‘.vy’ extensions and
would record the compiled json object in ‘./build’ folder. Note! To enable the vyper compiler you need to have
running docker.

Syntax

etherlime compile [dir] [runs] [solcVersion] [docker] [list] [all] [quiet] [output]
→˓[buildDirectory] [workingDirectory] [deleteCompiledFiles]

Parameters:

• dir - [Optional] By specifying dir you can set the root directory where to read the contracts and place the
build folder. By default dir is set to the current working directory ./

• runs - [Optional] By specifying runs between 1 and 999 you enabled the optimizer and set how many times
the optimizer will be run. By default the optimizer is not enabled.

• solcVersion - [Optional] By specifying solcVersion you can set the version of the solc which will be
used for compiling the smart contracts. By default it use the solc version from the node_modules folder.

• docker - [Optional] When you want to use a docker image for your solc you should set docker=true in
order solcVersion to accept the passed image.

• list - [Optional] By specifying list you can list the available solc versions. The following values can be
used: docker, releases, prereleases and latestRelease. By default only 10 version are listed

• all - [Optional] By specifying all together with list you will be able to list all available solc versions.

• quiet - [Optional] Disable verboseness during compilation. By the default quiet is set to false.

• output - [Optional] Defines the way that the logs are shown. Choices: none - silences the output of logs,
normal - see verbose logs in the console and structured - structured output in a file meant for inter program
communication.

• buildDirectory - [Optional] Defines the directory for placing builded contracts.

• workingDirectory - [Optional] Defines the folder to use for reading contracts from, instead of the default
one: ./contracts. Here can be specified also a single solidity file for compiling e.g: /contracts/
LimeFactory.sol.

• deleteCompiledFiles - [Optional] Delete the files in the compilation contract directory before compiling.
By the default deleteCompiledFiles is set to false.

• exportAbi - [Optional] In addition to the json build files, etherlime build abis folder with files containing the
abi of every contract

The solcVersion can accept the following values:

• <undefined> - passing undefined or simply don’t using the solcVersion argument will use the solc version from
the local node_modules

• <version> - you can pass directly the version of the solc. Example: --solcVersion=0.4.24

14 Chapter 1. What is etherlime?



Etherlime Documentation

• <image> - the image which will be used to load the solc into the docker. Example: nightly-0.4.
25-a2c754b3fed422b3d8027a5298624bcfed3744a5

• <path> - you can pass the absolute path to a local solc

• <native> - when you set the solc version argument to native the compiler is using the solc globally installed
on your machine

Here is example of result:

etherlime deploy

Syntax

etherlime deploy [file] [network] [secret] [-s] [compile] [runs] [output] [apiKey]

Parameters:

• file - [Optional] By specifying --file you can use another file as long as you keep the structure of the file
(exporting an async deploy function with network and secret params)

• network - [Optional] By specifying --network you can specify the network param to be passed to your
deploy method

• secret - [Optional] By specifying secret you can specify the secret param to be passed to your deploy
method. Comes in very handy for passing private keys.

• -s - [Optional] Silent - silences the verbose errors

• compile - [Optional] Enable compilation of the smart contracts before their deployment. By default the
deployment is done with a compilation

• runs - [Optional] Enables the optimizer and runs it the specified number of times

• output - [Optional] Defines the way that the logs are shown. Choices: none - silences the output of logs,
normal - see verbose logs in the console and structured - structured output in a file meant for inter program
communication.

• apiKey - [Optional] You can pass Etherscan API KEY in order to use it in the deployment script for verifying
smart contracts on Etherscan.

Running this command will deploy the file specified (defaults to ./deployment/deploy.js) The deployment
process is verbose and gives you real-time info about the performed actions. In addition there is a report of the actions
when the deployment finishes (as not all of us monitor the deployment process constantly):

1.2. Community 15

../_images/CompilationResult.png
../_images/DeploymentResult.png


Etherlime Documentation

etherlime history

Syntax

etherlime history [limit] [output]

Parameters:

• limit - [Optional] By specifying -limit you can set the max number of historical records to be shown.
Default is 5.

• output - [Optional] Defines the way that the logs are shown. Choices: none - silences the output of logs,
normal - see verbose logs in the console and structured - structured output in a file meant for inter program
communication.

Using this command will print you historical list of execution reports

etherlime test

Syntax

etherlime test [path] [timeout] [skip-compilation] [gas-report] [runs] [solc-version]
→˓[output] [port]

Parameters:

• path - [Optional] By specifying path you can set a path to a selected directory or you can set the path directly
to the javascript file which contains your tests. By default the path points to ./test.

• timeout - [Optional] This parameter defines the test timeout in milliseconds. Defaults to 2000 ms.

• skip-compilation - [Optional] This parameter controls wether a compilation will be ran before the tests
are started. Default: false.

• gas-report - [Optional] Enables Gas reporting future that will show Gas Usage after each test. Default:
false.

• runs - [Optional] By specifying runs between 1 and 999 you enabled the optimizer and set how many times
the optimizer will be run. By default the optimizer is not enabled.

• solc-version - [Optional] By specifying solc-version you can set the version of the solc which will
be used for compiling the smart contracts. By default it use the solc version from the node_modules folder.

• output - [Optional] Defines the way that the logs are shown. Choices: none - silences the output of logs,
normal - see verbose logs in the console and structured - structured output in a file meant for inter program
communication.

• port - [Optional] The port that the etherlime ganache is runing. Used for wiring up the default accounts
correctly. Defaults to 8545

Global Objects

We’ve augmented the test runner with the following things you can use:

• In your unit tests you can use the global accounts object. It contains the secretKey (private key) and instance
of ethers.Wallet of the account.

16 Chapter 1. What is etherlime?



Etherlime Documentation

• The assert object has assert.revert(promiseOfFailingTransaction) function for testing revert-
ing transactions

Available Utils

On your disposal there is a global available utils object. Here are the methods it exposes:

• utils.timeTravel(provider, seconds) method allowing etherlime ganache to move seconds
ahead. You need to pass your provider from the EtherlimeGanacheDeployer

• utils.setTimeTo(provider, timestamp) method allowing etherlime ganache to move to the de-
sired timestamp ahead. You need to pass your provider from the EtherlimeGanacheDeployer

• utils.mineBlock(provider) method telling the etherlime ganache to mine the next block. You need to
pass your provider from the EtherlimeGanacheDeployer

• utils.hasEvent(receipt, contract, eventName) allowing the user to check if the desired event
was broadcasted in the transaction receipt. You need to pass the Transaction receipt, the contract that emits it
and the name of the Event.

• utils.parseLogs(receipt, contract, eventName) allowing the user get parsed events from a
transaction receipt. You need to pass the Transaction receipt, the contract that emits it and the name of the Event.
Always returns an event.

Examples

General Example

const etherlime = require('etherlime');
const Billboard = require('../build/Billboard.json');

describe('Example', () => {
let owner = accounts[3];
let deployer;

beforeEach(async () => {
deployer = new etherlime.EtherlimeGanacheDeployer(owner.secretKey);

});

it('should set correct owner', async () => {
const BillboardContract = await deployer.deploy(Billboard, {});
let _owner = await BillboardContract.owner();

assert.strictEqual(_owner, owner.signer.address, 'Initial contract
→˓owner does not match');

});
});

execute function from another account

const etherlime = require('etherlime');
const ethers = require('ethers');
const Billboard = require('../build/Billboard.json');

(continues on next page)

1.2. Community 17



Etherlime Documentation

(continued from previous page)

describe('Example', () => {
let aliceAccount = accounts[3];
let deployer;

beforeEach(async () => {
deployer = new etherlime.EtherlimeGanacheDeployer(aliceAccount.

→˓secretKey);
const BillboardContract = await deployer.deploy(Billboard, {});

});

it('should execute function from another account', async () => {
let bobsAccount = accounts[4].signer;
const transaction = await BillboardContract

.from(bobsAccount /* Could be address or just index in
→˓accounts like 3 */)

.buy('Billboard slogan', { value: ONE_ETHER });
assert.equal(transaction.from, bobsAccount.address);

});
});

accounts

const Billboard = require('../build/Billboard.json');
const etherlime = require('etherlime');

describe('Billboard', () => {
let owner = accounts[5];

it('should initialize contract with correct values', async () => {
const deployer = new etherlime.EtherlimeGanacheDeployer(owner.

→˓secretKey);
const BillboardContract = await deployer.deploy(Billboard, {});

// Do something with the contract
});

});

assert.revert

it('should throw if throwing method is called', async () => {
assert.revert(contract.throwingMethod());

});

Check if the desired event was broadcasted in the transaction receipt

const etherlime = require('etherlime');
const Billboard = require('../build/Billboard.json');
const assert = require('chai').assert;

(continues on next page)

18 Chapter 1. What is etherlime?



Etherlime Documentation

(continued from previous page)

describe('Billboard', () => {
let owner = accounts[5];

it('should emit event', async () => {
const deployer = new etherlime.EtherlimeGanacheDeployer(owner.secretKey);
const BillboardContract = await deployer.deploy(Billboard, {});

const buyTransaction = await BillboardContract.buy('Billboard slogan', {
→˓value: 10000 });

const transactionReceipt = await BillboardContract.
→˓verboseWaitForTransaction(buyTransaction);

const expectedEvent = 'LogBillboardBought';

assert.isDefined(transactionReceipt.events.find(emittedEvent => emittedEvent.
→˓event === expectedEvent, 'There is no such event'));

});
});

etherlime coverage

Syntax

etherlime coverage [path] [timeout] [port] [runs] [solcVersion] [buildDirectory]
→˓[workingDirectory] [shouldOpenCoverage]

Parameters:

• path - [Optional] By specifying path you can set a path to a selected directory or you can set the path directly
to the javascript file which contains your tests. By default the path points to ./test.

• timeout - [Optional] This parameter defines the test timeout in milliseconds. Defaults to 2000 ms.

• port - [Optional] The port to run the solidity coverage testrpc (compatible with etherlime ganache deployer).
Default: 8545.

• runs - [Optional] By specifying number runs you can enable the optimizer of the compiler with the provided
number of optimization runs to be executed. Compilation is always performed by solidity coverage.

• solcVersion - [Optional] By specifying solcVersion you can choose a specific solc version to be used
for compilation and coverage reports.

• buildDirectory - [Optional] By specifying buildDirectory you can choose which folder to use for
reading builded contracts from, instead of the default one: ./build.

• workingDirectory - [Optional] By specifying workingDirectory you can choose which folder to use
for reading contracts from, instead of the default one: ./contracts.

• html - [Optional] By specifying html you can choose either to open automatically with you default browser
the html coverage report located in: ./coverage. Defaults to false.

etherlime debug

In order to debug transaction, you will need the following:

1.2. Community 19



Etherlime Documentation

• The transaction hash of a transaction on your desired blockchain.

• The source code of contract that transaction is executed from.

Syntax

etherlime debug <txHash> [port]

Parameters:

• txHash - Transaction hash of the transaction on your desired blockchain.

• port - [Optional] The port that the etherlime ganache is runing. Defaults to 8545.

Using the command will start the debugger interface with the following information:

• List of addresses involved or created during the cycle of the transaction passed in.

• List of available commands for using the debugger.

• The entry point of the transaction, including code preview and the source file.

Available Commands

The enter key is sending to the debugger the last command that is entered. After the initial start of the debugger, the
enter key is set to step to the next logical source code element (the next statement or expression that is evaluated by
the EVM). You can use n or enter initially.

• (o) step over Steps over the current line, relative to the position of the statement or expression currently
being evaluated in the Solidity source file. Use this command if you don’t want to step into a function call or
contract creation on the current line, or if you’d like to quickly jump to a specific point in the source file

• (i) step into Steps into the function call or contract creation currently being evaluated. Use this command
to jump into the function and quickly start debugging the code that exists there.

• (u) step out Steps out of the currently running function. Use this command to quickly get back to the
calling function, or end execution of the transaction if this was the entry point of the transaction.

• (n) step nextDteps to the next logical statement or expression in the source code. For example, evaluating
sub expressions will need to occur first before the virtual machine can evaluate the full expression. Use this
command if you’d like to analyze each logical item the virtual machine evaluates.

• (;) step instruction Allows you to step through each individual instruction evaluated by the virtual
machine. This is useful if you’re interested in understanding the low level bytecode created by the Solidity
source code. When you use this command, the debugger will also print out the stack data at the time the
instruction was evaluated.

• (p) print instruction Prints the current instruction and stack data, but does not step to the next in-
struction. Use this when you’d like to see the current instruction and stack data after navigating through the
transaction with the logical commands described above.

• (h) print help Print the list of available commands.

• (q) quit Print the list of available commands.

• (r) reset Reset the debugger to the beginning of the transaction.

• (b) add a breakpoint Set breakpoints for any line in any of your source files (see examples below).
These can be given by line number; by relative line number; by line number in a specified source file; or one
may simply add a breakpoint at the current point in the code.

20 Chapter 1. What is etherlime?



Etherlime Documentation

• (B) remove a breakpoint Remove any of your existing breakpoints.

• (B all) remove all breakpoints Remove all of your existing breakpoints.

• (c) continue to breakpoint Cause execution of the code to continue until the next breakpoint is
reached or the last line is executed.

• (+:) add watch expression Add a watch on a provided expression, for example: +:limes

• (-:) remove watch expression Remove a watch on a provided expression, for example: -:limes

• (?) list existing watch expressions Display a list all the current watch expressions.

• (v) display variables Display the current variables and their values.

Here is example of runned debugger with txHash:

etherlime shape

Syntax

etherlime shape [name]

Parameters:

• name - Specifies the name of the framework or library that the project will be build up. Choices: angular -
shapes boilerplate containing ready to use dApp with Angular front-end and Etherlime project. react - shapes
boilerplate containing ready to use dApp with React front-end and Etherlime project.

References:

Follow up the steps to set up your project here:

• Angular: https://github.com/LimeChain/etherlime-shape-angular/blob/master/README.md

• React: https://github.com/LimeChain/etherlime-shape-react/blob/master/README.md

• Monoplasma Demo: https://github.com/LimeChain/etherlime-shape-monoplasma

Running this command will create integrated blockchain project with all modules and settings needed.

1.2. Community 21

../_images/Debugger.png
https://github.com/LimeChain/etherlime-shape-angular/blob/master/README.md
https://github.com/LimeChain/etherlime-shape-react/blob/master/README.md
https://github.com/LimeChain/etherlime-shape-monoplasma


Etherlime Documentation

etherlime flatten

Syntax

etherlime flatten [file] [solcVersion]

Parameters:

• file - The name of the contract from “./contract” folder that you want to be flattened.

• solcVersion - [Optional] By specifying solcVersion you can set the version of the solc which will be
used for compiling the smart contracts. By default it uses the solc version from your node_modules or the
default one from etherlime.

Running this command will flatten the given smart contract and will record all Solidity code in one file along with
imported sources. It will create “./flat” folder where you can find the flattened contract.

etherlime ide

Syntax

etherlime ide [port]

Parameters:

• port - [Optional] By specifying --port you can specify port your ganache is running on. Default: 8545

Running this command will run web-based Solidity IDE that works with the file system. It will allow you to easily
edit, compile, deploy and interact with your smart contracts. You must have a running ganache to start the IDE with
loaded accounts.

etherlime zk

In order to start a project with Zero Knowledge Proof, please refer to etherlime init command.

Available Commands:

Circuit Compilation

• etherlime zk compile Running this command will compile a circuit file located in
zero-knowledge-proof/circuits and generates a new folder compiled-circuits.

Establish Trusted Setup

• etherlime zk setup Running this command will establish a trusted setup based on compiled circuit and
generates a folder trusted setup with proving_key and verification_key. The command reads
the compiled circuit from zero-knowledge-proof/compiled-circuits.

22 Chapter 1. What is etherlime?

https://etherlime.readthedocs.io/en/latest/cli/init.html


Etherlime Documentation

Generate ZK Proof

• etherlime zk proof [signal] [circuit] [provingKey] Running this command will gener-
ates a proof based on compiled circuit, public signal input and proving key. A new folder generated-proof
is generated with proof and public_signals. This proof can be used for off-chain Zero-Knowledge-Proof
verification.

Parameters:

– signal - [Optional] Specifies the file with public signals input to be used for generating a
proof. Defaults to input.json read from zero-knowledge-proof/input folder.

– circuit - [Optional] Specifies the compiled circuit for checking of matched
signals. Defaults to: circuit.json read from zero-knowledge-proof/
compiled-circuits folder.

– provingKey - [Optional] Specifies the prooving key to be used for generating a proof.
Defaults to: circuit_proving_key.json read from zero-knowledge-proof/
trusted-setup folder.

Verify Proof (Off-chain)

• etherlime zk verify [publicSignals] [proof] [verifierKey] Running this command
will generates a verifier based on public signals file that comes out of the proof command, the proof itself
and verifier key. A new folder verified-proof is generated with output.json file.

Parameters:

– publicSignals - [Optional] Specifies the file with signals to be used for generat-
ing verifying a proof. Defaults to circuit_public_signals.json read from
zero-knowledge-proof/generated-proof folder.

– proof - [Optional] Specifies the compiled proof that would be used for gen-
erating a proof based on it. Defaults to: circuit_proof.json read from
zero-knowledge-proof/generated-proof folder.

– verifierKey - [Optional] Specifies the verifier key to be used for generat-
ing a proof. Defaults to: circuit_verification_key.json read from
zero-knowledge-proof/trusted-setup folder.

output.json file has two params:

– verified - whatever the proof is verified or not

– timestamp - identifier for the time that event occurs

Generate Smart Contract for On-Chain Verification

• etherlime zk generate [verifierKey] Generates a verifier smart contract based on verification
key which can be used for on-chain verification. The smart contract is written in contracts folder and it is
ready to be compiled and deployed with etherlime compile and etherlime deploy. The verifier
smart contract has a public view method verifyProof that can be called for on-chain verification. You can
generate the call parameters with etherlime zk-generate-call cli command.

Parameters:

1.2. Community 23



Etherlime Documentation

– verifierKey - [Optional] Specifies the verifier key to be used for generat-
ing a verifier smart contract. Defaults to: circuit_verification_key.json read from
zero-knowledge-proof/generated-proof folder.

Generate output call based for On-chanin Verification

• etherlime zk call [publicSignals] [proof]Running this command will generates a call based
on proof and public signals. A new folder generated-call is generated with generatedCall.json
file. This generated call can be used for on-chain verification, for calling public view method verifyProof
of the generated verifier contract with this data.

Parameters:

– publicSignals - [Optional] Specifies the file with signals to be used for generat-
ing verifying a proof. Defaults to circuit_public_signals.json read from
zero-knowledge-proof/generated-proof folder.

– proof - [Optional] Specifies the compiled proof that would be used for gen-
erating a proof based on it. Defaults to: circuit_proof.json read from
zero-knowledge-proof/generated-proof folder.

1.2.4 Migration from Truffle to Etherlime

Install & Initialize Etherlime

npm i -g etherlime

Install the global etherlime to allow you to run etherlime commands.

etherlime init

The command will add to your project structure the following parts:

• ./contracts/LimeFactory.sol

• ./deployment/deploy.js

• ./test/exampleTest.js

Note! These are added just to give you an example. You can remove them.

Write new scripts for deployment using the template provided

• require etherlime module

• require the compiled contract from ./build folder not the contract itself

with Truffle

const LimeFactory = artifacts.require("./LimeFactory.sol");

with Etherlime

const etherlime = require('etherlime')
const LimeFactory = require('../build/LimeFactory.json');

24 Chapter 1. What is etherlime?



Etherlime Documentation

• set the deployer and then deploy the contract

Local deployment with Etherlime

const etherlime = require('etherlime')
const LimeFactory = require('../build/LimeFactory.json');
const InterfaceFactory = require('../build/InterfaceFactory.json')

const deployer = new etherlime.EtherlimeGanacheDeployer();
const limeFactory = await deployer.deploy(LimeFactory);

//example how to wrap deployed contract and to pass its address
const contractInstance = await etherlime.ContractAt(InterfaceFactory, limeFactory.
→˓contractAddress)

Find more examples for deployment here.

Modify tests

In order to modify the tests from Truffle to Etherlime, slight changes are needed to be done:

with Truffle

const LimeFactory = artifacts.require("./LimeFactory.sol");

contract('LimeFactory tests', async (accounts) => {

let owner = accounts[0];

beforeEach(async function() {
limeFactory = await LimeFactory.new();

});

it('should do something', () => {

})
}

with Etherlime

// step1: require Etherlime module
const etherlime = require('etherlime')

// step2: require compiled contract from ./build not the .sol file (as in deployment
→˓scripts)
const LimeFactory = require('../build/LimeFactory.json')

// step4: replace 'contract' descriptor to 'describe' then remove (accounts) param in
→˓async function
describe('LimeFactory tests', async () => {

// step5: initialize account
let owner = accounts[0];

// step6: set the deployer in before/beforeEach and fix the deployment scripts as
→˓we did before

(continues on next page)

1.2. Community 25

https://etherlime.readthedocs.io/en/latest/api/deployers.html


Etherlime Documentation

(continued from previous page)

beforeEach(async function() {

deployer = new etherlime.EtherlimeGanacheDeployer(owner.secretKey);
limeFactory = await deployer.deploy(LimeFactory);

});

it('should do something', () => {

})
})

Flexibility

• in case you want to use an address of an account, you must extend it to let owner = accounts[0].
signer.address

• when a contract’s method is called, the default sender is set to accounts[0]. If you want to execute it from
another account, replace {from: anotherAccount} object with .from(anotherAccount).

with Truffle

await limeFactory.createLime(newLime' 0, 10, 12, {from: accounts[1]})

with Etherlime

await limeFactory.from(2).createLime('newLime' 0, 10, 12);

// as a param you may also use:
await limeFactory.from(accounts[1]).createLime('newLime' 0, 10, 12);
await limeFactory.from(accounts[1].signer).createLime('newLime' 0, 10, 12);
await limeFactory.from(accounts[1].signer.address).createLime('newLime' 0, 10, 12);
await limeFactory.from(customSigner).createLime('newLime' 0, 10, 12);

• when you need to execute payable function, pass the value as an object contract.
somePayableFunction(arg1, arg2, {value: 100})

• don’t use “.call” when calling view functions.

• to timeTravel - replace web3 increaseTime with global options utils.timeTravel(provider,
seconds)

Assertions and available utils

For more convenience Etherlime provides some additional assertions and global utils object:

assert it is an address

it('should be valid address', async () => {
assert.isAddress(limeFactory.contractAddress, "The contract was not deployed");

})

assert a function revert

26 Chapter 1. What is etherlime?



Etherlime Documentation

it('should revert if try to create lime with 0 carbohydrates', async () => {
let carbohydrates = 0;
await assert.revert(limeFactoryInstance.createLime("newLime2", carbohydrates, 8,

→˓2), "Carbohydrates are not set to 0");
});

test an event

with Truffle:

let expectedEvent = 'FreshLime';
let result = await limeFactory.createLime('newLime' 8, 10, 12);
assert.lengthOf(result.logs, 1, "There should be 1 event emitted from new product!");
assert.strictEqual(result.logs[0].event, expectedEvent, `The event emitted was $
→˓{result.logs[0].event} instead of ${expectedEvent}`);

with Etherlime

let expectedEvent = 'FreshLime'
let transaction = await limeFactory.createLime('newLime' 8, 10, 12);
const transactionReceipt = await limeFactory.verboseWaitForTransaction(transaction)

// check the transaction has such an event
let isEmitted = utils.hasEvent(transactionReceipt, LimeFactory, expectedEvent);
assert(isEmitted, 'Event FreshLime was not emitted');

// parse logs
let logs = utils.parseLogs(transactionReceipt, LimeFactory, expectedEvent);
assert.equal(logs[0].name, 'newLime, "LimeFactory" with name "newLime" was not created
→˓');

Find more test examples here.

Final steps:

• delete ./migrations folder

• delete truffle.js/truffle-config.js file

• delete truffle from package.json

• delete node_modules

• run npm install

• open a fresh terminal tab and enter etherlime ganache

• run etherlime test

1.2. Community 27

https://etherlime.readthedocs.io/en/latest/cli/test.html


Etherlime Documentation

28 Chapter 1. What is etherlime?



CHAPTER 2

License

Completely MIT Licensed. Including ALL dependencies.

29


	What is etherlime?
	Milestones
	Community
	Quick Start
	Etherlime Library API
	Etherlime CLI
	Migration from Truffle to Etherlime


	License

